Last Time. We started discussing Stokes' theorem:

$$
\int_{\partial D} \alpha=\int_{D} \mathrm{~d} \alpha
$$

for a regular domain D with boundary ∂D in an oriented manifold M and a compactly supported form α of degree $\operatorname{dim} M-1$.
Today we will make sense of the " d " in " $\mathrm{d} \alpha$ " in the statement of Stokes' theorem above. Later we will define regular domains, their boundaries and orientation of boundaries induced by the orientation of the ambient manifold.

Theorem 29.1 (Exterior Derivative). For every manifold M there is a unique \mathbb{R}-linear map

$$
\mathrm{d}_{M}: \Omega^{*}(M) \rightarrow \Omega^{*+1}(M)
$$

(i.e. $\forall \omega \in \Omega^{k}(M)$ we have $\mathrm{d}_{M} \omega \in \Omega^{k+1}(M)$) called exterior derivative such that
(1) For all $f \in C^{\infty}=\Omega^{0}(M)$ we have $\mathrm{d}_{M} f=\mathrm{d} f$.
(2) For all open $W \subseteq M$ and all $\omega \in \Omega^{k}(M)$ we have $\left.\left(\mathrm{d}_{M} \omega\right)\right|_{W}=\mathrm{d}_{W}\left(\left.\omega\right|_{W}\right)$
(3) For all $\omega \in \Omega^{k}(M)$ and all $\eta \in \Omega^{l}(M)$ we have $\mathrm{d}_{M}(\omega \wedge \eta)=\mathrm{d}_{M}(\omega) \wedge \eta+(-1)^{k} \omega \wedge \mathrm{~d}_{M} \eta$
(4) For all $\omega \in \Omega^{k}(M)$ we have $\mathrm{d}_{M}\left(\mathrm{~d}_{M} \omega\right)=0$ (i.e. $\mathrm{d}_{M}^{2}=0$).

Proof of Uniqueness. Suppose that there exists $\mathrm{d}_{M}: \Omega^{*}(M) \rightarrow \Omega^{*+1}(M)$ with properties (1)-(4) above. Let $\left(x_{1}, \ldots, x_{m}\right): U \rightarrow \mathbb{R}^{m}$ be a coordinate chart. Then for all $\alpha \in \Omega^{k}(M)$

$$
\left.\alpha\right|_{U}=\sum_{|I|=k} a_{I} \mathrm{~d} x_{I}=\sum_{I=i_{1}<\cdots<i_{k}} a_{I} \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{k}}
$$

Claim 1. If d exists then we must have $\mathrm{d}_{U}\left(\mathrm{~d} x_{I}\right)=0$
Proof. We will proceed by induction on k. If $k=1$ then

$$
\mathrm{d}_{U}\left(\mathrm{~d} x_{i_{1}}\right) \stackrel{b y(1)}{=} \mathrm{d}_{U} \mathrm{~d}_{U} x_{i_{1}} \stackrel{b y(4)}{=} 0
$$

Suppose that $\mathrm{d}_{U}\left(\mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{n}}\right)=0$, then

$$
\mathrm{d}_{U}\left(\mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{n}} \wedge \mathrm{~d} x_{i_{n+1}}\right) \stackrel{b y(3)}{=} \mathrm{d}_{U}\left(\mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{n}}\right) \wedge \mathrm{d} x_{i_{n+1}}+(-1)^{n} \mathrm{~d} x_{i_{1}} \wedge \cdots \wedge \mathrm{~d} x_{i_{n}} \wedge \mathrm{~d}_{U}\left(\mathrm{~d} x_{i_{n+1}}\right)
$$

Hence

$$
\begin{aligned}
\left.\left(\mathrm{d}_{M} \alpha\right)\right|_{U} & =\mathrm{d}_{U}\left(\left.\alpha\right|_{U}\right) \\
& =\mathrm{d}_{U}\left(\sum_{|I|=k} a_{I} \mathrm{~d} x_{I}\right) \\
& =\sum_{|I|=k}\left(\mathrm{~d}_{U} a_{I} \wedge \mathrm{~d} x_{I}+a_{I} \mathrm{~d}_{U}\left(\mathrm{~d} x_{I}\right)\right) \\
& =\sum_{|I|=k} \mathrm{~d} a_{I} \wedge \mathrm{~d} x_{I}
\end{aligned}
$$

Therefore if $\mathrm{d}_{M}^{\prime} \Omega^{*}(M) \rightarrow \Omega^{*+1}(M)$ is another \mathbb{R}-linear map with properties (1)-(4), then for all k, all $\alpha \in \Omega^{k}(M)$, and all coordinate charts U we have

$$
\left.\left(\mathrm{d}_{M}^{\prime} \alpha\right)\right|_{U}=\mathrm{d}_{U}^{\prime}\left(\left.\alpha\right|_{U}\right)=\mathrm{d}_{U}^{\prime}\left(\sum a_{I} \mathrm{~d} x_{I}\right)=\sum \mathrm{d} a_{I} \wedge \mathrm{~d} x_{I}=\left.\left(\mathrm{d}_{M} \alpha\right)\right|_{U}
$$

This proves uniqueness of the exterior derivative d_{M}.
Proof of Existence. For each coordinate chart $\left(x_{1}, \ldots, x_{m}\right): U \rightarrow \mathbb{R}^{m}$ on M define for all k the map d_{U} : $\Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ by

$$
\mathrm{d}_{U}\left(\sum_{|I|=k} a_{I} \mathrm{~d} x_{I}\right) \stackrel{\text { def }}{=} \begin{cases}\mathrm{d} a_{I} & \text { if }|I|=0 \tag{29.1}\\ \sum_{|I|=k} \mathrm{~d} a_{I} \wedge \mathrm{~d} x_{I} & \text { if }|I|>0 \\ 1 & \end{cases}
$$

Assume for the moment:
Claim 2. d_{U} defined by (29.1) has properties (1)-(4).
Now define $\mathrm{d}_{M}: \Omega^{*}(M) \rightarrow \Omega^{*+1}(M)$ as follows: for any coordinate chart U set

$$
\begin{equation*}
\left.\left(\mathrm{d}_{M} \alpha\right)\right|_{U}=\mathrm{d}_{U}\left(\left.\alpha\right|_{U}\right) \tag{29.2}
\end{equation*}
$$

Does equation 29.2 make sense? Suppose that U and V are two compatible coordinate charts. Then

$$
\begin{array}{rll}
\left.\left(\mathrm{d}_{U}\left(\left.\alpha\right|_{U}\right)\right)\right|_{U \cap V} & \stackrel{\text { Claim }}{=}(2) & \mathrm{d}_{U \cap V}\left(\left.\left.\alpha\right|_{U}\right|_{U \cap V}\right) \\
& = & \mathrm{d}_{U \cap V}\left(\left.\left.\alpha\right|_{V}\right|_{U \cap V}\right) \\
& \stackrel{\text { Claim }}{=}(2) & \left.\left(\mathrm{d}_{U}\left(\left.\alpha\right|_{V}\right)\right)\right|_{U \cap V}
\end{array}
$$

Next we prove claim 2. We check conditions (1)-(4).
(1). For all $f \in C^{\infty}(U)$ we have $\mathrm{d}_{U} f=\mathrm{d} f$ by definition of d_{U}.
(2). Recall that we proved that d commutes with pullbacks and restrition $\left.\right|_{W}$ to W is the pullback by the inclusion $W \hookrightarrow U$. Hence for any $f \in C^{\infty}(U)$ and any open $W \subseteq U$ we have

$$
\left.\left(\mathrm{d}_{U} f\right)\right|_{W}=\left.\mathrm{d} f\right|_{W}=\mathrm{d}\left(\left.f\right|_{W}\right)=\mathrm{d}_{W}\left(\left.f\right|_{W}\right)
$$

Now

$$
\begin{aligned}
\left.\mathrm{d}_{U}\left(a_{I} \mathrm{~d} x_{I}\right)\right|_{W} & =\left.\left(\mathrm{d} a_{I} \wedge \mathrm{~d} x_{I}\right)\right|_{W} \\
& =\left.\left.\mathrm{d} a_{I}\right|_{W} \wedge\left(\mathrm{~d} x_{I}\right)\right|_{W} \\
& =\mathrm{d}\left(\left.a_{I}\right|_{W}\right) \wedge \mathrm{d}\left(\left.x_{I}\right|_{W}\right) \\
& =\mathrm{d}_{W}\left(\left.\left(a_{I} \mathrm{~d} x_{I}\right)\right|_{W}\right)
\end{aligned}
$$

Hence d_{U} has property (2).
(3). It is no loss of generality to assume that $\omega=a_{I} \mathrm{~d} x_{I}$ and $\eta=b_{J} \mathrm{~d} x_{J}$ for some indicies I and J and some functions a_{I}, b_{J}. Then

$$
\begin{aligned}
\mathrm{d}_{U}(\omega \wedge \eta) & =\mathrm{d}_{U}\left(a_{I} \mathrm{~d} x_{I} \wedge b_{J} \mathrm{~d} x_{J}\right) \\
& =\mathrm{d}_{u}\left(a_{I} b_{J} \mathrm{~d} x_{I} \wedge b_{J} \mathrm{~d} x_{J}\right) \\
& =\mathrm{d} a_{I} b_{J} \wedge \mathrm{~d} x_{I} \wedge \mathrm{~d} x_{J} \\
& =\underbrace{\mathrm{d} a_{I} \wedge \mathrm{~d} x_{I}}_{\mathrm{d} \omega} \wedge \underbrace{\left(b_{J} \mathrm{~d} x_{J}\right)}_{\eta}+(-1)^{k} \underbrace{\left(a_{I} \mathrm{~d} x_{I}\right)}_{\omega} \wedge \underbrace{\mathrm{d} b_{J} \wedge \mathrm{~d} x_{J}}_{\mathrm{d} \eta}
\end{aligned}
$$

This proves that (3) holds for d_{U}.
(4).

$$
\begin{aligned}
\mathrm{d}_{U}\left(\mathrm{~d}_{U}\left(a_{I} \mathrm{~d} x_{I}\right)\right) & =\mathrm{d}_{U}\left(\mathrm{~d} a_{I} \wedge \mathrm{~d} x_{I}\right) \\
& =\mathrm{d}_{U}\left(\mathrm{~d} a_{I}\right) \wedge \mathrm{d} x_{I}+(-1)^{k} \mathrm{~d} a_{I} \wedge \underbrace{\mathrm{~d}_{U}\left(\mathrm{~d} x_{I}\right)}_{=0} \\
& =\mathrm{d}_{U}\left(\sum \frac{\partial a_{I}}{\partial x_{i}} \mathrm{~d} x_{i}\right) \wedge \mathrm{d} x_{I}
\end{aligned}
$$

Now

$$
\mathrm{d}_{U}\left(\sum \frac{\partial a_{I}}{\partial x_{i}} \mathrm{~d} x_{i}\right)=\sum_{i, j} \underbrace{\frac{\partial^{2} a_{I}}{\partial x_{i} \partial x_{j}}}_{\text {Symmetric }} \underbrace{\mathrm{d} x_{j} \wedge \mathrm{~d} x_{i}}_{\text {Skew-symmetric }}
$$

hence is 0 . Thefore $\mathrm{d}_{U}\left(\mathrm{~d}_{U}\left(a_{I} \mathrm{~d} x_{I}\right)\right)=0$ and consequently $\mathrm{d}_{U} \circ \mathrm{~d}_{U}=0$. This proves claim 2 .

It remains to show that d_{M} defined by equation 29.2 has propeties (1)-(4).
(1). For all $f \in C^{\infty}(M)$ and any cooridante chart U

$$
\left.\left(\mathrm{d}_{M} f\right)\right|_{U} \quad \text { by our definition of } \mathrm{d}_{M} \mathrm{~d}_{U}\left(\left.f\right|_{U}\right)=\mathrm{d}\left(\left.f\right|_{U}\right)=\left.\mathrm{d} f\right|_{U}
$$

Since U is arbitrary, $\mathrm{d}_{M} f=\mathrm{d} f$.
(2). For all open $W \subseteq M$ and all coordinate charts $U \subseteq M$ we know that $U \cap W$ is a coordinate chart on W. Since d_{U} has property (3), we know that for all $\mu \in \Omega^{*}(U)$

$$
\begin{equation*}
\left.\left(\mathrm{d}_{U} \mu\right)\right|_{U \cap W}=\mathrm{d}_{U \cap W}\left(\left.\mu\right|_{U \cap W}\right) \tag{29.3}
\end{equation*}
$$

Therefore for any $\omega \in \Omega^{*}(M)$

$$
\begin{array}{rll}
\left.\left(\left.\left(\mathrm{d}_{M} \omega\right)\right|_{W}\right)\right|_{U \cap W} & =\left.\mathrm{d}_{M} \omega\right|_{U \cap W} \\
& =\left.\left(\left.\left(\mathrm{d}_{M} \omega\right)\right|_{U}\right)\right|_{W \cap U} \\
\stackrel{29.2}{=} & \left.\left(\mathrm{d}_{U}\left(\left.\omega\right|_{U}\right)\right)\right|_{W \cap U} \\
\stackrel{29.3}{=} & \mathrm{d}_{W \cap U}\left(\left.\left.\omega\right|_{U}\right|_{W \cap U}\right) \\
& \stackrel{29.2}{=} & \left.\mathrm{d}_{W}\left(\left.\omega\right|_{W}\right)\right|_{W \cap U}
\end{array}
$$

Hence $\left.\mathrm{d}_{M} \omega\right|_{W}=\mathrm{d}_{W}\left(\left.\omega\right|_{W}\right)$ if d_{M} and d_{W} are defined by equation 29.2.
(3). Say $\omega \in \Omega^{k}(M), \eta \in \Omega^{l}(M)$ and U a coordinate chart, then

$$
\begin{aligned}
&\left.\mathrm{d}_{M}(\omega \wedge \eta)\right|_{U} \stackrel{29.2}{=} \mathrm{d}_{U}\left(\left.(\omega \wedge \eta)\right|_{U}\right) \\
&=\mathrm{d}_{U}\left(\left.\left.\omega\right|_{U} \wedge \eta\right|_{U}\right) \\
&=\mathrm{d}_{U}\left(\omega_{U}\right) \wedge\left(\left.\eta\right|_{U}\right)+(-1)^{k}\left(\left.\omega\right|_{U}\right) \wedge \mathrm{d}_{U}\left(\left.\eta\right|_{U}\right) \\
&=\left.\left(\left(\mathrm{d}_{M} \omega\right) \wedge \eta\right)\right|_{U}+\left.(-1)^{k}\left(\omega \wedge\left(\mathrm{~d}_{M} \eta\right)\right)\right|_{U}
\end{aligned}
$$

(4).

$$
\left.\mathrm{d}_{M}\left(\mathrm{~d}_{M} \omega\right)\right|_{U}=\mathrm{d}_{U}\left(\left.\left(\mathrm{~d}_{M} \omega\right)\right|_{U}\right)=\mathrm{d}_{U}\left(\mathrm{~d}_{U}\left(\left.\omega\right|_{U}\right)\right)=0
$$

since $\mathrm{d}_{U} \circ \mathrm{~d}_{U}=0$.

