Last Time. We started discussing Stokes' theorem:

$$\int_{\partial D} \alpha = \int_D \mathrm{d}\alpha$$

for a regular domain D with boundary ∂D in an oriented manifold M and a compactly supported form α of degree dim M - 1.

Today we will make sense of the "d" in "d α " in the statement of Stokes' theorem above. Later we will define regular domains, their boundaries and orientation of boundaries induced by the orientation of the ambient manifold.

Theorem 29.1 (Exterior Derivative). For every manifold M there is a unique \mathbb{R} -linear map

$$d_M: \Omega^*(M) \to \Omega^{*+1}(M)$$

(i.e. $\forall \omega \in \Omega^k(M)$ we have $d_M \omega \in \Omega^{k+1}(M)$) called exterior derivative such that

- (1) For all $f \in C^{\infty} = \Omega^0(M)$ we have $d_M f = df$.
- (2) For all open $W \subseteq M$ and all $\omega \in \Omega^k(M)$ we have $(d_M \omega)|_W = d_W(\omega|_W)$
- (3) For all $\omega \in \Omega^k(M)$ and all $\eta \in \Omega^l(M)$ we have $d_M(\omega \wedge \eta) = d_M(\omega) \wedge \eta + (-1)^k \omega \wedge d_M \eta$
- (4) For all $\omega \in \Omega^k(M)$ we have $d_M(d_M\omega) = 0$ (i.e. $d_M^2 = 0$).

Proof of Uniqueness. Suppose that there exists $d_M : \Omega^*(M) \to \Omega^{*+1}(M)$ with properties (1)-(4) above. Let $(x_1, \ldots, x_m) : U \to \mathbb{R}^m$ be a coordinate chart. Then for all $\alpha \in \Omega^k(M)$

$$\alpha \Big|_U = \sum_{|I|=k} a_I \, \mathrm{d}x_I = \sum_{I=i_1 < \cdots < i_k} a_I \, \mathrm{d}x_{i_1} \wedge \cdots \wedge \mathrm{d}x_{i_k}$$

Claim 1. If d exists then we must have $d_U(dx_I) = 0$

Proof. We will proceed by induction on k. If k = 1 then

(

$$\mathbf{d}_U(\mathbf{d}x_{i_1}) \stackrel{by(1)}{=} \mathbf{d}_U \,\mathbf{d}_U x_{i_1} \stackrel{by(4)}{=} 0.$$

Suppose that $d_U(dx_{i_1} \wedge \cdots \wedge dx_{i_n}) = 0$, then

 $d_U(dx_{i_1} \wedge \dots \wedge dx_{i_n} \wedge dx_{i_{n+1}}) \stackrel{by(3)}{=} d_U(dx_{i_1} \wedge \dots \wedge dx_{i_n}) \wedge dx_{i_{n+1}} + (-1)^n dx_{i_1} \wedge \dots \wedge dx_{i_n} \wedge d_U(dx_{i_{n+1}}).$ Hence

$$\begin{aligned} \mathbf{d}_M \alpha \big|_U &= \mathbf{d}_U(\alpha \big|_U) \\ &= \mathbf{d}_U \left(\sum_{|I|=k} a_I \, \mathbf{d}_X \right) \\ &= \sum_{|I|=k} \left(\mathbf{d}_U a_I \wedge \mathbf{d}_X + a_I \, \mathbf{d}_U(\mathbf{d}_I) \right) \\ &= \sum_{|I|=k} \mathbf{d}_I \wedge \mathbf{d}_I. \end{aligned}$$

Therefore if $d'_M \Omega^*(M) \to \Omega^{*+1}(M)$ is another \mathbb{R} -linear map with properties (1)-(4), then for all k, all $\alpha \in \Omega^k(M)$, and all coordinate charts U we have

$$\left(\mathrm{d}'_{M}\alpha\right)\big|_{U} = \mathrm{d}'_{U}(\alpha\big|_{U}) = \mathrm{d}'_{U}\left(\sum a_{I}\,\mathrm{d}x_{I}\right) = \sum \mathrm{d}a_{I}\wedge\mathrm{d}x_{I} = \left(\mathrm{d}_{M}\alpha\right)\big|_{U}.$$

This proves uniqueness of the exterior derivative d_M .

Proof of Existence. For each coordinate chart $(x_1, \ldots, x_m) : U \to \mathbb{R}^m$ on M define for all k the map $d_U : \Omega^k(M) \to \Omega^{k+1}(M)$ by

(29.1)
$$d_U \left(\sum_{|I|=k} a_I \, \mathrm{d}x_I \right) \stackrel{\text{def}}{=} \begin{cases} \mathrm{d}a_I & \text{if } |I|=0\\ \sum_{|I|=k} \mathrm{d}a_I \wedge \mathrm{d}x_I & \text{if } |I|>0\\ 1 \end{cases}$$

Assume for the moment:

Claim 2. d_U defined by (29.1) has properties (1)-(4).

Now define $d_M : \Omega^*(M) \to \Omega^{*+1}(M)$ as follows: for any coordinate chart U set

(29.2)
$$(\mathbf{d}_M \alpha) \Big|_U = \mathbf{d}_U(\alpha \Big|_U)$$

Does equation 29.2 make sense? Suppose that U and V are two compatible coordinate charts. Then

$$\begin{aligned} \left(\mathbf{d}_{U}(\alpha\big|_{U}) \right) \big|_{U \cap V} &\stackrel{Claim}{=} \left(\mathbf{d}_{U \cap V}(\alpha\big|_{U}\big|_{U \cap V}) \right) \\ &= \mathbf{d}_{U \cap V}(\alpha\big|_{V}\big|_{U \cap V}) \\ &\stackrel{Claim}{=} \left(\mathbf{d}_{U}(\alpha\big|_{V}) \right) \big|_{U \cap V} \end{aligned}$$

Next we prove claim 2. We check conditions (1)-(4).

(1). For all $f \in C^{\infty}(U)$ we have $d_U f = df$ by definition of d_U .

(2). Recall that we proved that d commutes with pullbacks and restriction $|_W$ to W is the pullback by the inclusion $W \hookrightarrow U$. Hence for any $f \in C^{\infty}(U)$ and any open $W \subseteq U$ we have

$$\left(\mathrm{d}_{U}f\right)\big|_{W} = \mathrm{d}f\big|_{W} = \mathrm{d}(f\big|_{W}) = \mathrm{d}_{W}(f\big|_{W})$$

Now

$$\begin{aligned} \mathrm{d}_{U}(a_{I} \, \mathrm{d}x_{I})\big|_{W} &= \left(\mathrm{d}a_{I} \wedge \mathrm{d}x_{I}\right)\big|_{W} \\ &= \left.\mathrm{d}a_{I}\right|_{W} \wedge \left(\mathrm{d}x_{I}\right)\big|_{W} \\ &= \left.\mathrm{d}(a_{I}\big|_{W}) \wedge \mathrm{d}(x_{I}\big|_{W})\right. \\ &= \left.\mathrm{d}_{W}\left(\left(a_{I} \, \mathrm{d}x_{I}\right)\big|_{W}\right) \end{aligned}$$

Hence d_U has property (2).

(3). It is no loss of generality to assume that $\omega = a_I \, dx_I$ and $\eta = b_J \, dx_J$ for some indicies I and J and some functions a_I , b_J . Then

$$d_{U}(\omega \wedge \eta) = d_{U}(a_{I} dx_{I} \wedge b_{J} dx_{J})$$

$$= d_{u}(a_{I}b_{J} dx_{I} \wedge b_{J} dx_{J})$$

$$= da_{I}b_{J} \wedge dx_{I} \wedge dx_{J}$$

$$= \underbrace{da_{I} \wedge dx_{I}}_{d\omega} \wedge \underbrace{(b_{J} dx_{J})}_{\eta} + (-1)^{k} \underbrace{(a_{I} dx_{I})}_{\omega} \wedge \underbrace{db_{J} \wedge dx_{J}}_{d\eta}$$

This proves that (3) holds for d_U .

(4).

$$d_U (d_U(a_I \, \mathrm{d} x_I)) = d_U (\mathrm{d} a_I \wedge \mathrm{d} x_I)$$

= $d_U (\mathrm{d} a_I) \wedge \mathrm{d} x_I + (-1)^k \, \mathrm{d} a_I \wedge \underbrace{\mathrm{d}_U (\mathrm{d} x_I)}_{=0}$
= $d_U \left(\sum \frac{\partial a_I}{\partial x_i} \, \mathrm{d} x_i \right) \wedge \mathrm{d} x_I$

Now

$$d_U\left(\sum \frac{\partial a_I}{\partial x_i} \, \mathrm{d}x_i\right) = \sum_{i,j} \underbrace{\frac{\partial^2 a_I}{\partial x_i \partial x_j}}_{Symmetric} \underbrace{\frac{\partial x_j \wedge \mathrm{d}x_i}{Skew-symmetric}}_{Skew-symmetric},$$

hence is 0. Thefore $d_U (d_U(a_I dx_I)) = 0$ and consequently $d_U \circ d_U = 0$. This proves claim 2.

It remains to show that d_M defined by equation 29.2 has properties (1)-(4). (1). For all $f \in C^{\infty}(M)$ and any coordiante chart U

$$\left(\mathrm{d}_{M}f\right)\Big|_{U} \stackrel{\text{by our definition of }\mathrm{d}_{M}}{=} \mathrm{d}_{U}(f\Big|_{U}) = \mathrm{d}(f\Big|_{U}) = \mathrm{d}f\Big|_{U}.$$

Since U is arbitrary, $d_M f = df$.

(2). For all open $W \subseteq M$ and all coordinate charts $U \subseteq M$ we know that $U \cap W$ is a coordinate chart on W. Since d_U has property (3), we know that for all $\mu \in \Omega^*(U)$

(29.3) $(\mathrm{d}_U \mu)\big|_{U \cap W} = \mathrm{d}_{U \cap W}(\mu\big|_{U \cap W})$

Therefore for any $\omega \in \Omega^*(M)$

$$\left(\left(\mathbf{d}_{M} \omega \right) \Big|_{W} \right) \Big|_{U \cap W} = \mathbf{d}_{M} \omega \Big|_{U \cap W}$$

$$= \left(\left(\mathbf{d}_{M} \omega \right) \Big|_{U} \right) \Big|_{W \cap U}$$

$$\stackrel{29.2}{=} \left(\mathbf{d}_{U} (\omega \Big|_{U}) \right) \Big|_{W \cap U}$$

$$\stackrel{29.3}{=} \mathbf{d}_{W \cap U} (\omega \Big|_{U} \Big|_{W \cap U})$$

$$\stackrel{29.2}{=} \mathbf{d}_{W} (\omega \Big|_{W}) \Big|_{W \cap U}$$

Hence $d_M \omega |_W = d_W(\omega |_W)$ if d_M and d_W are defined by equation 29.2.

(3). Say $\omega \in \Omega^k(M)$, $\eta \in \Omega^l(M)$ and U a coordinate chart, then

$$d_{M}(\omega \wedge \eta)\Big|_{U} \stackrel{29.2}{=} d_{U}\left((\omega \wedge \eta)\Big|_{U}\right)$$

$$= d_{U}\left(\omega\Big|_{U} \wedge \eta\Big|_{U}\right)$$

$$= d_{U}\left(\omega_{U}\right) \wedge \left(\eta\Big|_{U}\right) + (-1)^{k}\left(\omega\Big|_{U}\right) \wedge d_{U}\left(\eta\Big|_{U}\right)$$

$$= \left((d_{M}\omega) \wedge \eta\right)\Big|_{U} + (-1)^{k}\left(\omega \wedge (d_{M}\eta)\right)\Big|_{U}$$

(4).

$$\left. \mathrm{d}_{M}(\mathrm{d}_{M}\omega) \right|_{U} = \mathrm{d}_{U}\left(\left(\mathrm{d}_{M}\omega\right) \right|_{U} \right) = \mathrm{d}_{U}\left(\mathrm{d}_{U}(\omega|_{U}) \right) = 0$$

since $d_U \circ d_U = 0$.

Typeset by R. S. Kueffner II